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Abstract

Index option skew is a variable commonly looked at by investors to assess market conditions -

commonly referred to as a risk reversal or crash risk. In the cross-section, value stocks and junk

bonds do poorly when the price of risk reversals increases. However, investors are slow to fully

incorporate this information into prices leading to significant predictability in value vs. growth

stocks as well as junk vs. investment grade bonds. Using data on mutual fund flows, we find

that investors rotate out of value stocks slowly following increases in the price of risk reversals

confirming the underreaction observed in returns. The predictability of value vs. growth and junk

vs. investment grade is economically significant and poses a challenge to strictly rational models

of information processing by investors.



1 Introduction

Professional investors commonly look to the options market to assess market conditions through

the premium the market places on portfolio protection. Specifically, they look at the difference in

implied volatility between the put and call options on the S&P 500 index. As investors become more

cautious about future market outcomes, they purchase more puts - often financing the investment

by selling calls - which increases the difference in the implied volatility between puts and calls;

this trade is known as a risk reversal. Our work attempts to understand if the cross-section of

securities efficiently incorporates information regarding changes in the price of risk reversals. We

use the cross-section of equity securities as our primary test assets and verify our conclusions in

the corporate bond market as well.

Our findings are two-fold: the value-minus-growth (HML)1 trade performs poorly when the price

of risk reversals increases. HML incorporates information into its price slowly and thus continues to

do poorly the following month as well. These conclusions also hold in the corporate bond market:

the junk-minus-investment grade trade performs poorly when the price of risk reversals increases

but also continues to perform poorly the following month. Using mutual fund flow data, we find

that following increases in the price of risk reversals - which can happen because investors become

more risk averse or because the distributional characteristics of the underlying market change -

investors rotate out of value funds and into growth funds. However, this rotation happens slowly

contributing to the predictability we find in HML.

Our work contributes to understanding how information diffuses from the options market to

the equity market. Several papers have explored how individual option skew relates to future

returns Conrad et al. (2013) find that risk neutral skewness of individual options forecasts higher

future returns while Xing et al. (2010) find that a larger differential between out of the money put

options and call options forecasts a lower future return attributing the result to slow information

diffusion (and forces out risk neutral skewness in a multivariate setting). Ang et al. (2012) show

that individual stock options contain information regarding future returns of individual stocks.

Brunnermeier et al. (2008) examines the difference between put and call volatility in currency pairs

showing that currencies involved in carry trades exhibit significant crash risk as measured by the
1We refer to a trade that goes long value and short growth as well as the formal value factor constructed by Fama

and French (1992) as HML.
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respective options. Pan (2002) shows that the difference between out of the money put volatility

and out of the money call volatility is largely driven by a downward jump risk premium. Bollen

and Whaley (2004) finds that S&P skew is largely driven by buying pressure from investors for puts

but remains agnostic to the reasons. Unlike the aforementioned papers, we examine how investor

risk neutral estimates of market crash risk derived from S&P 500 options affects the cross-section

of stock and credit returns.

Our findings that the value minus growth (HML) factor is highly correlated with innovations

in skew changes ties with another literature on understanding the value premium. In a series

of papers Fama and French (1992, 1993, 1996, 1998) show that high book-to-market securities

earn high returns relative to low book-to-market stocks. The rational asset pricing literature has

advocated for an ICAPM style model where growth and value stocks have covariance with state

variables. Campbell and Vuolteenaho (2004) examine the covariance of securities with discount

rates and cash flows. Using an ICAPM they show that the price of risk associated with discount

rate covariance is lower; value stock betas are mostly composed of cash flow betas while growth

stock betas are discount rate betas. Therefore value stocks should command a higher return per

unit of market beta. Petkova and Zhang (2005) show that market β of value stocks is higher in

bad states of the world. Our work poses a challenge for a strictly rational interpretation of HML

since the factor that is supposed to explain returns is itself predictable. This is also important for

empirical papers that document anomalies in the stock market: if certain factors are predictable

then examining exposure to static factors is no longer a high enough threshold. We need to think

about how dynamic portfolios of factors affect the strength of other anomalies.

2 Risk Reversals

Intuitively, risk reversals correspond to a self financing position that an individual uses to express

concern about negative market outcomes. It has also been used extensively, for example Brunner-

meier et al. (2008), as a measure of crash risk. Specifically, if the implied volatility of puts is higher

than calls, this implies that traders believe the risk neutral distribution of returns is negatively

skewed. The theoretical motivation for using the option skew to forecast returns comes from Pan

(2002) who constructs a model to attempt to reconcile the dynamics of spot prices of the S&P 500

2



with option prices on the same. Pan finds that a model that only includes a volatility risk premium

is inadequate to fit the option series and a model that includes jumps with state dependent intensity

is necessary. Specifically, she uses a model that incorporates a time varying jump intensity that

rises with volatility: when market volatility increases, so does the probability of a large downward

jump. Unlike a model that only includes a risk premium for volatility, this model isn’t rejected by

the data and is able to price the full term structure of options well. The model estimates a risk

premium of 5.5% for diffusive risk and 3.5% for jump risk on the S&P 500. Jump risk is specifically

reflected in out of the money puts: for at the money options, approximately 55% of the overall risk

premia is due to jump risk. For a 5% out of the money put, 80% of the risk premia is due to jumps

while for a 5% out of the money call, only 30% is due to jumps. This differential ability by out of

the money puts and calls to capture the magnitude of the jump risk premium is reflected in our

construction of SKEW . Specifically define

SKEWt ≡
1
N

N∑
j=1

IV (P )j,t −
1
N

N∑
j=1

IV (C)j,t (2.1)

where IV (P ) (IV (C)) is the volatility of 1 year S&P 500 out of the money (OTM) put (call)

options at equally spaced delta grid points. Thus this is simply the average volatility on out of the

money (OTM) S&P 500 put options minus the average volatility on OTM S&P 500 call options.

We use the interpolated volatility surface from OptionMetrics to compute SKEW monthly from

1996-2012 based on data availability. The surface provides a set of volatilities for put and call

options in increments of five delta units and thus is symmetric around the at the money (ATM)

point. Since our work will focus on monthly data and option markets close 15 minutes after equity

markets, we use the second to last day of the month to compute our implied volatility related

metrics to prevent any look ahead bias.

To get a better sense of how SKEW relates, empirically, to the moments of the risk neutral

distribution we follow the methodology of Bakshi et al. (2003) and extract the model free moments

from the cross section of S&P 500 option prices. We proxy for market volatility using the VIX

index and extract the risk neutral skewness, RNSKEW . As noted earlier, a high positive SKEW

represents risky states of the world from the perspective of the investor. Analogously a highly pos-

itive VIX represents high (risk neutral) forecasted levels of volatility; a highly negative RNSKEW
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represents a negatively skewed distribution. The point to keep in mind is that a negative innovation

in RNSKEW is an increase in risk from the perspective of an investor. The opposite is true for

VIX and SKEW : a positive innovation to these variables corresponds to a riskier distribution. We

extract innovations at the monthly frequency using univariate ARMA models chosen by BIC for

each quantity (SKEW, VIX and RNSKEW ). All of the quantities are can be described by a low

order ARMA model.

Our goal is to understand how SKEW innovations, εskew, relate to innovations in risk neutral

moments. We do this parametrically using linear regression and non-parametrically using local

polynomial regressions. Namely, we run two forms of regressions:

εskew,t = f(εrnskew,t, εvix,t) (2.2)

εskew,t = a+ βvεvix,t + βrnsεrnskew,t + βi(εvix,tεrnskew,t) + ηt (2.3)

where f(·) is a second order local polynomial. Figure 1 presents a surface representing the results

of fitting (2.2). Variables are standardized prior to running these regressions so that magnitudes

can be more easily interpreted. The arrows point in the positive direction for each variable.

The figure plots the fitted values of εskew,t from regression (2.2) against εvix,t and εrnskew,t. It

shows εskew is high when there is an increase in volatility and the distribution of returns becomes

more negatively skewed. Thus SKEW is a measure of the joint behavior of volatility and skewness.

This empirical result is consistent with the theoretical model of Pan (2002) who specifies risk neutral

jump intensity as a function of volatility. Specifically, in her model the jump intensity increases with

market volatility and this is our finding as well. This can be examined in a linear regression context

also: the table below the figure presents results of regression (2.3). The results are the same as those

explained by the plot: SKEW increases when the distribution becomes more negatively skewed

(εrnskew < 0) and volatility increases (εvix > 0). Additionally, there is a significant interaction

effect that was highlighted by the plots: SKEW increases particularly strongly when there is an

increase in volatility and the distribution of returns becomes more negatively skewed.

It is helpful to understand how SKEW varies through time in relation to the VIX and the

business cycle since investors are generally familiar with the time-series pattern of these quantities.

Figure 2 presents a plot of SKEW for our sample along with the VIX and SKEW orthogonalized
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to the VIX (using linear regression) labeled OrthSKEW ; recessions are highlighted using gray

bars. The variables have been standardized. One obvious pattern is the correlation that SKEW

exhibits with the VIX: roughly 60%. However, there are subtle differences in the pattern: SKEW

was higher relative to its normal levels than the VIX (relative to its normal levels) prior to the

dot-com bubble bursting. It also spiked up prior to the 2008 financial crisis and has remained

elevated after the crisis. We will see further in the article that these features are important in

predicting HML returns.

3 Security Underreaction

3.1 Equities

Pan (2002) provides the motivation for examining SKEW as a measure of aversion by investors

to jumps in the S&P 500: she finds that the overwhelming majority of the difference in OTM put

and call volatilities corresponds to the jump premium (as opposed to actual jump realizations). We

document that SKEW does, in fact, have significant forecasting power for the overall market return

consistent with it being a measure of risk premium. If investors who trade S&P 500 options (and the

underlying index since options investors often delta hedge their positions) are more sophisticated

than the average investor in the cross-section of equities, then information from SKEW will diffuse

through the cross-section slowly.

The finance literature has already identified several variables that forecast future market returns.

We are careful to control for these other variables to understand the multivariate implications of

SKEWt on market returns. The variables that we consider are the dividend yield on the S&P 500,

the smoothed earnings yield defined as the 10 year trailing moving average of aggregate earnings on

the S&P 500 divided by the index price level, the term premium defined as the difference between

the 10 year and 3 month treasury bond yield and the default premium defined as the difference in

yield on Moody’s AAA index and Moody’s BAA index. To understand the relationship between

SKEWt and expected market returns, we run the following regression:

Rem,t = a+ ρmR
e
m,t−1 + βsSKEWt−1 + βdpdpt−1 + βdydyt−1 + βseyseyt−1 + βtptpt−1 + εm,t (3.1)

5



using monthly data from 1996 - 2012. Our sample is constrained by the availability of options data.

Additionally, much of the expected return literature - see Cochrane (2011) for a recent summary

- has reported stronger effects at longer horizons. Therefore, we also run a regression of 6 month

market excess returns on predictor variables:

Rem,t→t+5 = a+ρmR
e
m,t−1 +βsSKEWt−1 +βdpdpt−1 +βdydyt−1 +βseyseyt−1 +βtptpt−1 +εm,t (3.2)

Table 1 reports the results. As noted earlier, since options markets close later than equity

markets, we skip an extra day between information on SKEWt and any equity return to prevent

look-ahead bias. Thus in monthly data, SKEWt represents observations on the second to last day

of the month. SKEW has significant forecasting power for market returns even in the presence of

other state variables. A one volatility point higher SKEW corresponds to roughly 30 - 60 basis

points of expected market returns the following month. Similarly the second half of the table shows

that a one volatility point increase in SKEW is related to 1.8% higher expected return over the

following 6 months.

We next turn to the cross-section of equities: to determine if innovations in SKEW are differ-

entially important in the cross-section (this is not a pre-determined conclusion) we use the Fama-

French 25 portfolios as our basis assets (since individual equity security returns are noisy) and

regress excess returns of each portfolio, Rei,t, on εskew controlling for market returns and volatility

innovations proxied by innovations in the VIX index:

Rei,t = a+ βmR
e
m,t + βvεvix,t + βεskew

εskew,t + νt (3.3)

We are careful to control for volatility innovations because Pan’s model (and our earlier empirical

results) specifies jump intensity to be a function of volatility so we want to be sure we aren’t picking

up changes in the volatility risk premium. Table 2 presents the multiple β of each portfolio with

respect to εskew. The results here are clear: growth stocks have a positive exposure to increases in

the jump risk premium while value stocks have a negative exposure. That is, when the risk neutral

distribution becomes riskier, value stocks do poorly while growth stocks do well. The results are
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especially strong in small and medium stocks.

Since HML is the factor that has exposure to εskew (while the small-minus-big factor does not),

we use the HML portfolio directly rather than each individual Fama-French portfolio in subsequent

results. As mentioned in the introduction, we are interested in understanding how efficient securities

in the cross-section are at incorporating information regarding changes in jump risk premium into

their prices; we find a significant lag in the price adjustment process. In addition to doing poorly

at time t when there is a positive innovation to SKEWt, Rhml,t+1 is also highly negative; value

stocks continue to underperform the following month. Figure 3 plots the cumulative response to

εskew,t from the regression of

Rhml,t = a+ βmR
e
m,t + βε,jεskew,t−j + εt (3.4)

for j = 0...12. The Newey-West error bounds are presented in the plot in dashes; j is measured on

the x-axis. For each j, the figure plots
∑j
k=0 βε,k and assumes that estimates of βε,j are independent.

This regression can be interpreted as asking: if there is a one volatility point increase in SKEW at

time t and a one volatility point increase in SKEW at t− 1, ..., t− j then what is the cumulative

effect on HML at time t?

We see a striking pattern: while Rhml,t is indeed highly negatively correlated with εskew,t,

there is a significant delay in the price adjustment process. The plot shows that the j = 0 and

j = 1 coefficients for Rhml,t are highly negative and significant (with associated t-statistics of

−2.94 and −3.84, respectively). Following an increase in SKEW , HML continues to underperform

the following month. In fact, we see that the price adjustment process actually takes up to 4

months to fully realize. This is a startling finding: to confirm these results we extend the sample

internationally to Europe and Japan2. Note that our analysis is done from the perspective of a US

investor (thus, for example, market returns refer to the CRSP value weighted market return). We

also attempt to control for the effect of time-varying HML market β. As noted earlier, Petkova and

Zhang (2005) found that the market β of HML varies through time; it is possible that a high level
2While this gives us comfort against data snooping concerns, we note that there is a 40% correlation between US

HML returns and JPY HML returns; a 60% correlation between US and Europe HML returns.
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of SKEWt−1 forecasts a higher market β at time t. To be precise, imagine that

Rhml,t = βm,tR
e
m,t + ηt (3.5)

βm,t = β0 + β1SKEWt−1 (3.6)

then the appropriate attribution regression to run for HML is

Rhml,t = β0R
e
m,t + β1(SKEWt−1 ·Rem,t) + ηt (3.7)

We would like to eliminate the possibility that a time varying market β is driving our results so we

include the interaction of SKEWt−1 and Rem,t into the regression. Therefore, for each region we

run a forecasting regression of the form:

Rhml,t = a+ βmR
e
m,t + βs

 4∑
j=1

εskew,t−j

 + βi(Rem,t · SKEWt−1) + νt (3.8)

where we use the sum of the last four innovations in SKEW based on the results of Figure 3. Table

3 presents the summary statistics of HML returns in each region (Panel A) and reports the results

from this regression (Panel B).

Panel A shows that HML in all three regions has a high return and a high CAPM alpha during

our sample period. The units are left in their natural monthly frequency (the Sharpe ratio is

annualized). Thus HML, in the US, has a CAPM alpha of .347% per month. The sample statistics

in all three regions are similar with Europe having the highest Sharpe ratio. Panel B reports that

a one volatility point unexpected increase in SKEW over the last four months leads to a .6%

lower HML return the following month in the US, .25% lower HML return in Japan and .37%

lower HML return in Europe. The adjusted R2 statistics are also quite large: a simple univariate

forecasting regression in the US can explain 10% of the variation in HML returns in monthly data.

The t-statistics are also very large: in the US the t-statistic associated with
∑4
j=1 εskew,t−j is −6;

this is directly linked to the Sharpe ratio of a strategy that one can construct (ie Sharpe (1994)).

To construct a realistic trading strategy from these regressions, we would like to avoid estimating

an ARMA model for innovation extraction and also avoid estimating the distributed lag model for
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forecasting Rhml. While this is certainly the optimal method, our sample is relatively small and

we want to avoid all possibility of look-ahead bias in parameters. To get around this constraint,

we will simply use the level of SKEW : since several lags of innovations seem important (as noted

earlier) and SKEW is not terribly persistent, we hope that older innovations that are irrelevant

will have decayed sufficiently and thus not erode our forecasting performance. To do this we simply

run regression (3.8) but replace the term
∑4
j=1 εskew,t−j with SKEWt−1:

Rhml,t = a+ βmR
e
m,t + βsSKEWt−1 + βi(Rem,t · SKEWt−1) + νt (3.9)

Table 4 reports these results. Comparing the two tables we can immediately see that our forecasting

performance is worse using the level of SKEW as to be expected: the t-statistic is cut in half in the

US and so is the R2. Thus, backtest results that we report using SKEW as a forecasting variable

is a lower bound on the true performance that an investor can achieve.

These results imply a strategy, which we refer to as active HML, that would selectively rotate

into and out of HML being long value (growth) and short growth (value) stocks at different points

in time. We are careful to prevent any look-ahead bias in the parameters and ensure this strategy

is realistic. We begin by computing a forecast for returns on HML using

Rhml,t−1 = a+ βsSKEWt−2 + εt−1 (3.10)

allowing 36 months burn in period for estimation of βs. Based on this model we compute the

forecast for the following month’s HML return, R̂hml,t. Assuming an endowment of Wt−1, we

build a portfolio by putting whml,t−1 of Wt−1 into HML. Assuming that margin accounts pay no

interest rate and require 50% of the absolute value of the position (so that if one wants to go

long HML by purchasing “H” and selling “L” then one has to put up margin equivalent to half of

the position), the remainder of the endowment, (1− |whml,t−1|)Wt−1, is invested into the risk free

rate3. The weight is defined as whml,t−1 = tanh

 R̂hml,t√
1
t

∑t

j=1(R̂hml,j−R̂hml,t)2

. This is the hyperbolic

tangent of the forecasted HML return scaled by the standard deviation of previous HML forecasts.

The hyperbolic tangent is applied so that whml,t−1 ∈ [−1, 1]. The gross return to this portfolio
3We assume that Wt−1 > 0; if at any point this condition is violated the strategy stops.
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Wt
Wt−1

= 1 + whml,t−1Rhml,t + (1 − |whml,t−1|)Rfree,t where Rfree,t is the risk free rate realized at

time t. Each successive month, the window over which the model is estimated expands but always

only includes historical data. Rebalancing is done monthly for both active and passive HML. The

monthly rebalancing for passive HML assures that the investor puts half of his wealth in being long

“H” and half into being short “L”. The cumulative return to passive and active HML is presented

in Figure 4. The shaded regions represent times when the strategy is short HML while the white

areas represent times when the strategy is long HML.

As is evident from the plot, the position direction is quite persistent; since HML is such a large

aggregate, transaction costs here are also minimal. However, the performance of active HML is

significantly better than passive HML. An investment of $1.00 in HML in 1999 becomes roughly

$1.50 by the end of 2012. This same dollar invested in active HML becomes roughly $2.50 by

the end of 2012. The annualized information ratio, IR ≡ E(Ractive
hml,t −R

passive
hml,t

)
σ(Ractive

hml,t
) , for this strategy is

.36. The times when this strategy is short HML correspond to significantly anomalous market

conditions. For example we see that this strategy is short HML during the run-up in tech stocks of

the late 90’s. It is also short HML during/post the 2008 financial crisis. These two periods account

for a substantial portion of the profit generated by this strategy. This is to be expected: we are

attempting to pick up states of the world when the price investors are willing to pay for portfolio

insurance spikes and these states should not be a frequent occurrence.

While we have been fortunate that our time sample includes diversity in business cycle condi-

tions, we are still constrained by the availability of options data from OptionMetrics. To verify

that our results work in other time samples - a truly out of sample test - we attempt to impute the

value of SKEW based on quantities that SKEW should be picking up. To extend the sample in

a principled way, we use the LASSO variable selection method of Tibshirani (1996). This method-

ology is an `1 penalized regression that selects variables among a candidate set that best capture

the true relationship and kicks out all irrelevant ones. The set of possible variables that we include

is It ≡ {κ3, Rhml,t, R
e
m,t, dyt, tpt, dpt} and It−1. κ3 is the physical third cumulant of market returns

computed over the past 3 months of daily data, Rhml,t is the US HML return, Rem,t is the market

return, dyt is the dividend yield, tpt is the term premium, dpt is the default premium. The logic

for including these variables is simple: κ3 could capture the portion of SKEW corresponding to

the physical distribution (though based on Pan (2002) we know that it will be a very small effect),
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and dyt, tpt, and dpt could capture portions of the jump risk premium.

To operationalize this technology, we use five-fold cross validation using the 1996-2012 sample,

to fit the LASSO model to the SKEW using It and It−1. The cross validation is needed to select

the shrinkage parameter that LASSO uses to determine how aggressive it should be in shrinking

regression coefficients. For a particular shrinkage parameter, we divide the sample (1996-2012) into

5 sections, pick a section to leave out, fit LASSO over the remaining four sections and compute the

root-mean-square error of the model in forecasting the level of SKEW in the left out section; we

then leave a different section out and repeat the process. The average root-mean-square error for

this particular value of the shrinkage parameter is recorded. A shrinkage parameter is selected that

creates the lowest forecasting error. This shrinkage parameter corresponds to a particular set of

variables out of the available set. A simple OLS model is then fit from 1996-2012 using the selected

set of variables and is used to compute a fitted value of SKEW , termed ̂SKEW , going back to

1963.

We validate that our results hold over this significantly longer non-overlapping sample period:

we show that ̂SKEW has forecasting power for Rem and Rhml is slow to respond to innovations in
̂SKEW , termed ε̂skew. Using the sample from 1963 - 1996, the first part of the Table 5 shows that

Rhml responds slowly to innovations in ε̂skew: a one volatility point increase in ̂SKEW corresponds

to 40 - 50 basis points poorer performance in HML the following month. The second part of the

table shows that ̂SKEW is capable of forecasting the market return the following month as we

saw in the 1996 - 2012 sample using SKEW . The R2 in these regressions is significantly lower as

one would expect: we are attempting to capture characteristics of a variable that is best reflected

through option prices and thus our ability to do this is limited. However, it is reassuring that we

can capture a relevant portion of it to validate our results.

3.2 Corporate Bonds

We have shown that HML responds to innovations in SKEW slowly in three regions and over a

lengthy time sample; these results led us directly to an implementable trading strategy. Do these

results hold in other asset classes? We examine corporate bonds to try and answer this question.

At the same time, it provides another out of sample test of our results regarding slow investor

reaction to changes in crash risk. Corporate bonds are a natural asset class to examine because
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they contain a large cross-section (like equities) and have assets that are considered risky in absolute

terms (junk bonds) by investors and those that are considered safe (investment grade bonds). Bank

of America/ML provides total return indices by rating category (AAA through CCC) which we use

as basis assets.

We first examine if these assets have differential exposure to innovations in SKEW in Table 6.

We see clearly that AAA bonds enjoy a positive return while CCC bonds have a negative return

when SKEW increases contemporaneously. Thus the long CCC, short AAA trade performs poorly

when crash risk increases; this is the same type of result that we saw with value and growth stocks.

We next ask the question: do these securities incorporate changes in risk premia into their prices

efficiently? We saw that the cross-section of equities does not and thus HML incorporates changes

in SKEW with a delay. To answer this question we run the analysis in equation (3.4) replacing

Rhml,t on the left hand side of the regression with RCCC−AAA,t: the return of CCC bonds minus

the return on AAA bonds. Figure 5 presents the results of this analysis. At lag zero we see the

contemporaneous results presented in Table 6: the long junk short investment grade (CCC-AAA)

trade performs poorly when there is a positive innovation in SKEW . However, we also see that

it proceeds to perform poorly the following month as well (until reversing in month two). That is,

these securities are also slow to fully incorporate all available information into their prices though

they are more expedient than the cross-section of equities (which took 4 months). One can speculate

regarding the reason for this: one story might be that corporate bonds have a more sophisticated

investor base since fewer retail investors participate actively in the bond market. Another reason

might be that jump risk is highly relevant for credit investors since they are concerned about

bankruptcy. A significantly negative jump in the market (and thus in equity valuations) could

drastically alter the probability of bankruptcy. Therefore, credit investors may be more sensitive

to this particular information than equity investors.

These results can be presented in a regression framework using equation (3.8) replacing Rhml

on the left hand side with returns on each bond rating category and using one lag of SKEW

innovations as opposed to four based on Figure 5. Table 7 presents the results of these regressions.

We see that a one point increase in SKEW predicts a −77 basis point return to RCCC−AAA the

following month. These results confirm that underreaction to changes in crash risk is prevalent in

the financial markets.
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4 Investor Trading Behavior

We have shown that prices are slow to fully incorporate information from SKEW into HML. A large

behavioral/frictional literature has documented significant delays in price reactions, discussed nicely

by Hong and Stein (1999); Duffie (2010). Ang et al. (2012) show that options on individual securities

have relevant information for future returns of those securities not captured by the standard risk

factors. They propose that sophisticated investors express their views in the options market and

this information is reflected in individual stock returns slowly.

Our work finds results that are similar: innovations in SKEW contain information about future

HML returns. While there is a clear contemporaneous reaction as shown in Figure 3, there is also

a significant delay. We confirm that investors are in fact slow to react to this information by

examining mutual fund flows. Just like HML returns, we find that flows into value and growth

mutual funds are predictable using past innovations in SKEW . A positive innovation in SKEW

causes investors to withdraw money from value funds while not withdrawing money from growth

funds.

We first classify funds by value style using their four factor exposure

Rf,t = a+ βm,tRm,t + βsmb,tRsmb,t + βhml,tRhml,t + βumd,tRumd,t + εf,t (4.1)

using 36 months rolling regression as in Chan et al. (2002) among others. Funds are arranged into

quintiles each month based on last month’s HML exposure: βhml,t−1. We further define

FLOWf,t ≡
TNAf,t − TNAf,t−1(1 +Rf,t)

TNAf,t−1
(4.2)

for each fund f and month t where TNA is the total net assets and Rf,t is the return of fund f .

This is the percentage increase/decrease in the assets of the fund due to contributions/withdrawals

by investors. Additionally as Chevalier and Ellison (1997) show, flows into mutual funds are highly

dependent on the funds’ past performance; we are sure to condition on this in our analysis so that

any effect in investor behavior we find is due to information in SKEW as opposed to past fund

returns. Therefore, we also compute the 1 year rolling cumulative return of each fund: Rf,t−12→t−1.

Then, for each value style bucket (1 - 5) a TNAt−1 weighted average of FLOWf,t (termed FLOWb,t

13



for b ∈ {1, 2, .., 5}) and Rf,t−12→t−1 (termed Rb,t−12→t−1) is taken. We regress:

FLOWb,t = a+ βb,skewεskew,t−1 + βb,retRb,t−12→t−1 + νt (4.3)

Results in Table 8 show that βb,skew is highly significant and negative for value stocks but roughly

zero or positive for growth stocks. Investors pull money out of value funds in response to an increase

in market crash risk with a lag. The magnitudes are significant: one volatility point increase in

SKEW causes a .2% outflow from value funds relative to growth funds the following month. This

underreaction by investors to the information expressed by option market participants drives the

predictability of HML returns.

One may be concerned that mutual funds pre-position their portfolios in anticipation of flows

and thus dampen the effect of lagged information on stocks. Consider a savvy value mutual fund

manager who received an inflow of money this month: he may decide that there is a good chance

that he will also receive an inflow of money the next month since flows are persistent. Knowing

this fact, he uses his cash position (or takes a loan from a bank) to purchase value stocks this

month anticipating to return his cash position (or pay the loan) to equilibrium the next month.

This would serve to dampen the predictability of value stocks due to investor underreaction. To

account for this fact we extract innovations from flows into each quintile, εflowb,t , and treat these as

unexpected flows to the fund manager. We then regress these unexpected flows on εskew,t−1 and

past fund returns, Rb,t−12→t−1:

εflowb,t = a+ βb,skewεskew,t−1 + βb,retRb,t−12→t−1 + νt (4.4)

The results of this regression are presented in Table 9. This, however, does not alter our conclusions:

innovations in SKEW predict unexpected flows into growth and value stocks. Investors withdraw

.1% from value funds relative to growth funds in response to one volatility point increase in SKEW

the previous month.
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5 Discussion and Conclusion

We have shown that returns to HML (as well as corporate bonds) have a significant amount of

predictability. Utilizing this predictability, we perform an “out-of-sample” test of performance:

active HML significantly improves the returns to an investor relative to an investment in passive

HML. A dollar invested in passive HML in 1999 grows to approximately $1.50 by the end of 2012.

On the other hand, that same investment grows to roughly $2.50 in active HML. Furthermore,

this predictability is easy to extract: it does not require complex computation just the implied

volatility skew on the S&P 500. Using mutual fund flow data, we show that this predictability is

due to delayed reaction by investors.

Our results have deep implications for theories attempting to explain high returns on HML:

theories must now consider explaining returns to active HML (a much more difficult thing to do

given the favorable return profile). More generally, our results relate to a large literature on slow

moving capital and segmented markets. We show how a large, heavily examined factor can have a

significant amount of return predictability due to the slow rotation into and out of value/growth

stocks by investors. One may regard slight economic frictions that prevent small stocks from re-

pricing perfectly as unimportant. However, the return predictability that we identify here is on an

aggregate, economically meaningful level. A significant portion of this predictability comes from

periods when the market experiences stress: during the tech bubble and during the financial crisis

of 2008. We highlight that these periods can generate significant mispricing for large aggregates.
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Table 1: SKEW Forecasts of Future Market Excess Returns

We report the forecasting power of SKEW for future market returns across the 1 month and 6 month horizon. We
are careful to control for other variables that have been found to predict market returns in the literature.

Dependent Variable SKEWt−1 Rem,t−1 dpt−1 dyt−1 seyt−1 tpt−1 (Intercept) R2 N

Rem,t
0.260 -0.734 0.35% 201
[1.221] [-0.724]

Rem,t
0.377 0.162 -1.357 2.31% 201

[2.221] [1.978] [-1.429]

Rem,t
0.591 0.171 -3.659 1.741 0.741 -0.315 -4.078 5.45% 201

[2.176] [1.934] [-2.051] [0.986] [1.178] [-1.031] [-2.291]

Rem,t→t+5
1.674 -4.803 4.32% 196

[2.025] [-0.907]

Rem,t→t+5
1.873 0.272 -5.847 4.78% 196

[2.346] [1.233] [-1.140]

Rem,t→t+5
2.142 0.300 -12.345 10.952 2.754 -1.208 -22.535 16.75% 196
[1.516] [1.305] [-1.089] [0.672] [0.469] [-0.466] [-1.795]
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Table 2: Cross Sectional Sort by β to εskew

Multiple β of Fama-French 25 portfolio returns to innovations in SKEW ; equation (3.3). Newey-West t-statistics
are in brackets.

Book-to-Market
Size Growth 2 3 4 Value Value - Growth
Small 0.59 0.22 0.05 -0.13 -0.41 -1.00

[1.07] [0.47] [0.15] [-0.37] [-0.99] [-2.89]

2 0.67 0.17 -0.24 -0.26 -0.23 -0.90
[1.41] [0.51] [-0.94] [-0.84] [-0.74] [-2.18]

3 0.53 0.05 -0.33 -0.29 -0.56 -1.09
[1.66] [0.30] [-2.03] [-1.59] [-2.45] [-2.67]

4 0.47 -0.20 -0.32 -0.21 -0.24 -0.71
[1.85] [-1.10] [-1.66] [-1.03] [-0.98] [-1.87]

Large 0.02 -0.17 -0.34 -0.52 -0.27 -0.29
[0.15] [-1.11] [-1.84] [-2.41] [-1.20] [-1.14]

Large - Small -0.57 -0.39 -0.39 -0.39 0.14
[-0.91] [-0.70] [-0.90] [-0.92] [0.27]
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Table 3: Forecast of Rhml,t Using
∑4
j=1 εskew,t−j 1996-2012

Panel A shows summary statistics for HML in US, Japan (JPY) and Europe (EUR): all of these regions have a
significant value effect. The results are from the perspective of a US investor (CAPM α is with respect to the US
market). Panel B shows that lagged innovations in SKEW have significant forecasting power for HML in all of these
regions.

(a) HML Summary Statistics By Region

Region Rt minRt maxRt σ(Rt) Sharpe CAPM α N
US 0.267 -12.600 13.840 3.495 0.265 0.347 201
JPY 0.457 -13.820 10.080 3.092 0.512 0.545 201
EUR 0.487 -9.570 10.960 2.653 0.636 0.481 201

(b) Rhml Forecasts

Region
∑j=4
j=1 εskew,t−j Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US
-0.600 0.403 10.87% 197

[-6.010] [1.689]

US -0.576 -0.154 0.468 15.07% 197
[-5.159] [-1.406] [1.773]

US -0.564 -0.419 0.053 0.428 17.00% 197
[-6.190] [-1.692] [1.403] [1.785]

JPY -0.255 0.505 2.09% 197
[-2.312] [1.939]

JPY -0.227 -0.183 0.582 9.89% 197
[-2.648] [-3.560] [2.380]

JPY -0.223 -0.268 0.017 0.569 9.74% 197
[-2.412] [-3.108] [1.048] [2.399]

EUR -0.376 0.554 7.15% 197
[-4.621] [2.052]

EUR -0.379 0.023 0.545 6.84% 197
[-4.849] [0.302] [1.837]

EUR -0.371 -0.147 0.034 0.520 8.02% 197
[-4.169] [-0.822] [1.261] [1.876]
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Table 4: Forecast of Rhml,t Using SKEWt−1 1996-2012

Reports the results of equation (3.9): forecasts of HML returns using the SKEW level which is useful in turning our
results into a trading strategy that avoids any look-ahead in parameters.

Region SKEWt−1 Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US
-0.524 2.695 6.26% 201

[-3.778] [4.217]

US -0.484 -0.154 2.581 10.41% 201
[-3.506] [-1.559] [4.298]

US -0.507 -0.480 0.065 2.650 13.54% 201
[-4.396] [-1.885] [1.568] [4.671]

JPY -0.285 1.778 2.05% 201
[-2.203] [3.067]

JPY -0.238 -0.180 1.646 9.58% 201
[-2.014] [-3.573] [3.152]

JPY -0.246 -0.286 0.021 1.668 9.61% 201
[-2.002] [-3.131] [1.253] [3.084]

EUR -0.380 2.245 5.65% 201
[-3.651] [4.756]

EUR -0.386 0.025 2.263 5.39% 201
[-3.602] [0.346] [4.221]

EUR -0.401 -0.181 0.041 2.307 7.41% 201
[-3.203] [-0.956] [1.397] [3.818]
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Table 5: Extending the Sample: 1963 - 1996

We extend the sample to 1963 by replicating SKEW using other variables, termed ̂SKEW . This table reports the
results of forecasting returns on HML using innovations in ̂SKEW and the market using ̂SKEW from 1963 - 1996.

Dependent Variable ε̂skew,t−1 Rm,t ̂SKEW t−1 ·Rm,t ̂SKEW t−1 Rm,t−1 (Intercept) R2 N

Rhml,t
-0.519 0.461 1.49% 396

[-2.472] [3.078]

Rhml,t
-0.413 -0.198 0.551 12.70% 396

[-2.274] [-5.239] [3.936]

Rhml,t
-0.423 -0.217 0.006 0.548 12.50% 396

[-2.069] [-2.400] [0.228] [3.977]

Rm,t
0.443 -0.781 0.85% 396

[2.107] [-1.277]

Rm,t
0.479 0.071 -0.914 1.09% 396

[2.360] [1.364] [-1.512]
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Table 6: Corporate Bond Returns and εskew

We document that AAA bonds perform well when SKEW increases while CCC bonds perform poorly. Thus the
trade that goes long CCC and short AAA bonds behaves like HML with respect to innovations in SKEW .

Dependent Variable εskew,t εvix,t Rm,t (Intercept) R2 N

Raaa,t
0.228 -0.049 -0.006 0.271 1.08% 201
[1.699] [-0.532] [-0.143] [2.741]

Raa,t
0.154 -0.066 0.006 0.277 2.65% 201
[1.527] [-0.876] [0.142] [2.734]

Ra,t
0.167 -0.113 0.021 0.298 8.28% 201
[1.565] [-1.053] [0.419] [2.478]

Rbbb,t
-0.117 -0.055 0.072 0.338 11.48% 201
[-0.798] [-0.688] [1.506] [2.547]

Rbb,t
-0.296 -0.117 0.166 0.392 39.26% 190
[-1.454] [-1.789] [2.948] [2.384]

Rb,t
-0.427 -0.115 0.259 0.258 46.08% 190

[-2.167] [-2.216] [5.063] [1.549]

Rccc,t
-0.720 -0.121 0.454 0.337 46.06% 190

[-2.259] [-1.532] [3.696] [1.247]

Rccc,t −Raaa,t
-0.945 -0.070 0.465 -0.181 44.34% 190

[-2.413] [-0.854] [3.810] [-0.650]
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Table 7: Bond Return Forecasts Using εskew,t−1

This table shows that lagged innovations in SKEW are able to forecast corporate bond returns highlighting that
this asset class is also slow to incorporate information from the options market into prices.

Dependent Variable εskew,t−1 Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

Raaa,t
0.397 0.034 -0.006 0.276 7.45% 200

[2.374] [0.493] [-0.494] [2.636]

Raa,t
0.318 0.051 -0.004 0.271 6.49% 200

[2.165] [0.761] [-0.401] [2.653]

Ra,t
0.365 0.146 -0.014 0.276 10.04% 200

[2.176] [1.365] [-0.954] [2.127]

Rbbb,t
0.233 0.283 -0.032 0.330 16.27% 200
[1.856] [1.946] [-1.438] [2.327]

Rbb,t
0.073 0.445 -0.033 0.334 36.43% 190
[0.693] [2.537] [-1.271] [2.030]

Rb,t
-0.262 0.500 -0.024 0.198 43.02% 190
[-1.670] [3.386] [-1.063] [1.090]

Rccc,t
-0.376 0.569 0.009 0.226 43.44% 190
[-1.504] [2.036] [0.201] [0.793]

Rccc,t −Raaa,t
-0.775 0.545 0.014 -0.277 43.70% 190

[-2.897] [2.090] [0.337] [-0.914]
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Table 8: Flows Into Value and Growth Funds

Mutual funds are sorted into style quintiles according to βhml,t−1 in a regression of Rf,t = a+βm,tR
e
m,t+βsmb,tRsmb,t+

βhml,tRhml,t + βumd,tRumd,t - where Rf,t is the return of fund f at time t - as in Chan et al. (2002) among others.
FLOWf,t ≡

T NAf,t−T NAf,t−1(1+Rf,t)
T NAf,t−1

is computed for each fund f and month t. To control for the flow performance
relationship cumulative returns over the past year are also computed and denoted by Rf,t−12→t−1. Then for each
quintile an asset (TNAt−1) weighted average is taken across FLOWb,t ≡

∑
f∈b

wf,t−1FLOWf,t and Rb,t−12→t−1 ≡∑
f∈b

wf,t−1Rf,t−12→t−1. Then for each quintile we regress FLOW t = a+βskewεskew,t−1 +βretRt−12→t−1 +νt. The
table shows that an increase in SKEWt causes investors to pull money away from value funds.

Value Style Quintile εskew,t−1 Rt−12→t−1 (Intercept) R2 N

1

0.007 -0.182 -0.50% 199
[0.164] [-1.036]
0.035 0.016 -0.362 16.88% 199
[0.821] [2.678] [-3.111]

2

-0.099 0.089 1.31% 199
[-1.988] [1.002]
-0.082 0.010 -0.019 5.22% 199
[-1.592] [1.597] [-0.168]

3

-0.027 0.007 -0.14% 199
[-0.632] [0.167]
-0.012 0.008 -0.066 4.30% 199
[-0.258] [2.120] [-1.072]

4

-0.137 -0.055 4.25% 199
[-3.826] [-0.518]
-0.117 0.009 -0.147 7.82% 199

[-2.507] [2.192] [-1.535]

5

-0.208 0.057 4.73% 199
[-2.581] [0.377]
-0.164 0.017 -0.139 12.76% 199

[-2.039] [3.289] [-0.792]

5-1

-0.215 0.239 1.66% 199
[-2.076] [0.675]
-0.163 0.057 0.215 53.75% 199

[-1.980] [3.742] [1.387]
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Table 9: Unexpected Flows Into Value and Growth Funds

This table reports the results of equation (4.4) showing that innovations in FLOW (relative to past values of FLOW )
are predictable using lagged innovations in SKEW .

Value Style Quintile εskew,t−1 Rt−12→t−1 (Intercept) R2 N

1

0.045 -0.038 0.04% 199
[2.108] [-0.930]
0.042 -0.002 -0.020 -0.06% 199
[1.208] [-0.685] [-0.412]

2

-0.032 -0.019 -0.17% 199
[-0.784] [-0.421]
-0.035 -0.002 0.000 -0.44% 199
[-0.868] [-0.558] [0.001]

3

-0.017 -0.027 -0.36% 199
[-0.364] [-0.808]
-0.022 -0.003 -0.001 -0.17% 199
[-0.479] [-0.793] [-0.011]

4

-0.051 -0.025 0.62% 199
[-1.600] [-0.694]
-0.059 -0.003 0.009 1.02% 199
[-1.490] [-1.328] [0.178]

5

-0.050 0.007 0.32% 199
[-0.961] [0.175]
-0.047 0.001 -0.006 -0.09% 199
[-0.895] [0.826] [-0.144]

5-1

-0.102 0.013 1.40% 199
[-2.328] [0.238]
-0.104 -0.002 0.014 1.10% 199

[-2.383] [-0.372] [0.259]
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Dependent Variable εrnskew,t εrnskew,t ∗ εvix,t εvix,t (Intercept) R2 N

εskew,t
-0.167 -0.266 0.516 0.062 41.02% 201

[-3.421] [-2.074] [9.369] [1.013]

Figure 1: Nonparametric Relationship Between SKEW , VIX and RNSKEW Innovations

We show a nonparametric surface that relates innovations in SKEW to innovations in the VIX and RNSKEW .
The surface is the result of a local polynomial regression using second order polynomials and 75% span. Below the
plot we present the parametric version of the relationship from equation (2.3).
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Figure 2: Time Series Plot of SKEW

Plot of SKEW , VIX and OrthSKEW (SKEW orthogonalized to the VIX through linear regression) from 1996-2012.
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Figure 3: HML Underreaction to SKEW Innovations

This plot demonstrates the underreaction of Rhml,t to innovations in SKEWt. We run regressions of Rhml,t =
a+ βmRm,t + βε,jεskew,t−j + εt for j = 0...12 and plot

∑j

k=0 βε,k. The error bars are plotted in dashes and assume
that estimates of βε,j are independent. As is clear from the plot, there is a significant predictability to Rhml,t based
on lagged innovations in SKEWt.

29



0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

1
9

9
9

0
2

2
0

0
0

0
2

2
0

0
1

0
2

2
0

0
2

0
2

2
0

0
3

0
2

2
0

0
4

0
2

2
0

0
5

0
2

2
0

0
6

0
2

2
0

0
7

0
2

2
0

0
8

0
2

2
0

0
9

0
2

2
0

1
0

0
2

2
0

1
1

0
2

2
0

1
2

0
2

Passive HML Active HML

Figure 4: Cumulative Returns to Passive and Active HML Strategy

This plot demonstrates the out-of-sample forecasting performance of SKEWt in timing returns to Rhml,t. To con-
struct the strategy we run a forecasting regression of Rhml,t−1 = a+βsSKEWt−2+εt−1 using 36 months of lagged data
(this is the burn in period). Based on this model we compute the forecast for next month’s HML return, R̂hml,t. To
determine how much to invest each month we assume an endowment ofWt−1 and Build a portfolio by putting whml,t−1

of it into HML and (1 − |whml,t−1|) into the risk free rate where whml,t−1 = tanh

 R̂hml,t√
1
J

∑t

j=1
(R̂hml,j−R̂hml,t)2

.

This is the hyperbolic tangent of the forecasted HML return scaled by the standard deviation of previous HML
forecasts. The hyperbolic tangent is applied so that whml,t−1 ∈ [−1, 1]. The return to this portfolio is 1 + Rp,t =
1 +whml,t−1Rhml,t + (1− |whml,t−1|)Rfree,t. The mechanism described avoids look ahead bias in values and param-
eters. This cumulative return is plotted in the figure and labeled Active HML. Passive HML corresponds to monthly
rebalancing strategy that invests equal weights into being long “H” and short “L”.
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Figure 5: Cumulative CCC-AAA Response to εskew
Plot of the cumulative response to innovations in SKEW of a trade that goes long CCC and short AAA bonds.
Corporate bonds, like equities, are also slow to fully incorporate all information from SKEW .
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